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State-of-the-art LC/MS methods applied to the characterisation
of a highly-glycosylated fusion protein: Etanercept
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INTRODUCTION

Alarge number of pharmaceuticals are glycosylated proteins. An adequate glycosylation is critical for therapeutic proteins in terms of safety, bioactivity, solubility, stability, and pharmacokinetics
and dynamics. Consequently, their glycosylation profile must be thoroughly analysed. However, these proteins are typically produced in different expression systems, whose glycosylation
machineries function through sequential and competitive steps, hence creating heterogeneities of glycosylation (nature of glycans, number and location of sites). This creates a challenging
analytical puzzle that requires a number of orthogonal analytical techniques, at different levels of analysis (released glycans, peptides, intact and subunits), to be solved.

Etanercept is a tumor necrosis factor-a (TNFa) antagonist, commercialised as Enbrel® for the treatment of rheumatoid arthritis, psoriasis, psoriatic arthritis, and ankylosing spondylitis. Below,
we present the use of LC(/MS) methods to characterise both the N- and O-glycosylation of Etanercept in a reduced amount of time (sample preparation, data analysis), and from limited protein
amounts.
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| I 1 | g * Analysis by HILIC/FLR/MS: Identification based on dextran ladder calibration coupled with glycans database.
‘ : : * Identifications semi-automated and confirmed by MS, with mass errors below 3 ppm.

* Relative quantification of two independent sample preparations, on different days, yields very little deviation
Figure 1: Analytical workflow for the characterisation of the glycosylation of Etanercept (1.5% average RSD), and is consistent with data from the literature (Anal. Chem. 2014, 86, 576).

N-GLYCANS SIALYLATION PROFILING SITE-DEPENDENT N-GLYCANS PROFILING

Sialylation can significantly influence the safety and efficacy of protein-based drugs, notably related to their half-life and Peptide mapping is the method of choice for the determination and profiling of
immunogenicity. It is thus critical to profile the sialylation of N glycans, as it is also a useful measure of consistency glycosylation sites at the amino-acid level. There are three concensus sites
during manufacturing. on Etanercept, two on the TNFa receptor, and one the Fc subunit.
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Sialic acids bear a negative charge, which makes anion exchange (AEX) chromatography a method of choice for their - Classical tryptic digestion yields 64-amino acid AKVRCTKTSD TVCDSCEDST YTQLWNWVPE  CLSCGSRCSS
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* AEX-RP developed to confirm N-glycan profile and sialylation profile. ata. I
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» Overall profiling (assuming similar response
factors) yielded similar relative responses to
RapiFluor, and only two low-intensity glycans

¢ Identification based on MS only.
« Confirmation by MSE fragmentation.

« Sialylation profile of N-glycans consistent with other Figure 5: Fluorescence chromatogram remaining undetected (G1 and G3FS2).

methods. of the AEX-RP separation of 2-AB labelled N-glycans
RELEASED O-GLYCOSYLATION O-GLYCOSYLATION
O-GLYCANS PROFILING SITES DETERMINATION SUBUNIT-LEVEL ANALYSIS

There is no universal (s Each Etanercept chain carries 89 putative O-glycosylation Subunit analysis is a straightforward methodology because it does not

enzyme that cleaves cspse sites. Therefore, to reduce the glycosylation heterogeneity of require long sample preparation steps. Etanercept was digested with IdeZ

all O-glycans. We e Etanercept, the proteinwas N-deglycosylated and desialylated, (Promega), cleaving the TNFa receptor and Fc moieties, then N-deglycosylated
opted for a chemical yielding exclusively asialylated core 1 O-glycans. Peptides and reduced in situ.

O-deglycosylation, generation and identification were performed as described for
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+ 1-mm diameter column allows profiling unlabelled ¢ ETD fragmentation targeted —scren wrmoos sesrrivec mossmcas 1ot gly P Raw and deconvoluted mass spectra of the Fc/2 (left)
O-glycans from low protein amounts (2.5 ug / on glycosylated peptides : 1, & chain, with remarkable mean and example of four deconvoluted mass spectra
injection). carried out, yielding c/z peptide Figure 8: identification of error of 9 ppm, belovy 5 ppm of the TNFa receptor subunit (right)

+ Two main core 1 O-glycans detected with mass  fragmentation, ultimately  g_giycosylated peptides and for 25 most intense hits
errors below 3 ppm, and confirmed by use of allowing determination of each  subsequent O-glycosylation * Most abundant species conjugated by 9 or 10 glycans (35% and 47%,
automated MS/MS fragmentation. O-glycosylation site, as well as sites determination respectively), with average of 9.5 O-glycans per chain

« Peeling product also identified, in much smaller ~ Occupancy.  Gives access to molecular weight of Etanercept, normally challenging

amounts than alternative methods (Anal. Chem. ¢ Thirteen sites unambiguously characterised with average because of heterogeneity of glycosylation
2014, 86, 576). occupancy of 9.4 sites




