State-of-the-art LC/MS methods applied to the characterisation of a highly-glycosylated fusion protein: Etanercept

Eric Largy, Fabrice Cantais, Arnaud Delobel

QUALITY ASSISTANCE, Technoparc de Thudinie 2, B-6536 DONSTIENNES (Belgium) arnaud.delobel@quality-assistance.be

INTRODUCTION

A large number of pharmaceuticals are glycosylated proteins. An adequate glycosylation is critical for therapeutic proteins in terms of safety, bioactivity, solubility, stability, and pharmacokinetics and dynamics. Consequently, their glycosylation profile must be thoroughly analysed. However, these proteins are typically produced in different expression systems, whose glycosylation machineries function through sequential and competitive steps, hence creating heterogeneities of glycosylation (nature of glycans, number and location of sites). This creates a challenging analytical puzzle that requires a number of orthogonal analytical techniques, at different levels of analysis (released glycans, peptides, intact and subunits), to be solved.

Etanercept is a tumor necrosis factor-α (TNFα) antagonist, commercialised as Enbrel[®] for the treatment of rheumatoid arthritis, psoriasis, psoriatic arthritis, and ankylosing spondylitis. Below, we present the use of LC(/MS) methods to characterise both the N- and O-glycosylation of Etanercept in a reduced amount of time (sample preparation, data analysis), and from limited protein amounts.

The

way

with

most

to

N-glycosylation

COMPREHENSIVE ANALYTICAL WORKFLOW

the HILIC mode is often used.

RELEASED N-GLYCANS PROFILING

- N-glycan release and labelling performed with RapiFluor-MS labelling kit (Waters), starting from 15 µg of protein, in less than an hour.
- Analysis by HILIC/FLR/MS: Identification based on dextran ladder calibration coupled with glycans database.
- · Identifications semi-automated and confirmed by MS, with mass errors below 3 ppm.
- Relative quantification of two independent sample preparations, on different days, yields very little deviation (1.5% average RSD), and is consistent with data from the literature (Anal. Chem. 2014, 86, 576)

Figure 1: Analytical workflow for the characterisation of the glycosylation of Etanercept

N-GLYCANS SIALYLATION PROFILING

Sialylation can significantly influence the safety and efficacy of protein-based drugs, notably related to their half-life and immunogenicity. It is thus critical to profile the sialylation of N glycans, as it is also a useful measure of consistency during manufacturing.

Sialic acids bear a negative charge, which makes anion exchange (AEX) chromatography a method of choice for their separation. We developed two mixed-mode LC separations, namely anion exchange-reverse phase (AEX-RP) and anion-exchange-hydrophilic interactions (AEX-HILIC), compatible with both 2-AB and RapiFluor-MS labelled N-glycans.

neutral

Anion-exchange-hydrophilic interactions analysis

- AEX-HILIC gradient developed to group various sialylation levels in single peaks.
- · Allows determination of sialylation profile in reduced amount of time, with straightforward peak integrations, and no MS hyphenation.
- Presence of neutral (42%), monosial ylated (41%), and disial ylated (17%) glycans exclusively, which is consistent with RapiFluor-MS profile.

Anion-exchange-reverse phase / MS analysis

- AEX-RP developed to confirm N-glycan profile and sialylation profile.
- · Grouping by sialylation levels obtained but with resolution of individual glycans.
- · Co-elutions observed in HILIC mode can be resolved with this orthogonal LC separation.
- · Identification based on MS only.
- Confirmation by MS^E fragmentation.
- · Sialylation profile of N-glycans consistent with other methods.

Figure 4: Fluorescence chromatogram of the **AEX-HILIC** separation of 2-AB labelled N-glycans

disialvlated

Figure 5: Fluorescence chromatogram of the AEX-RP separation of 2-AB labelled N-glycans

O-GLYCOSYLATION

SITE-DEPENDENT N-GLYCANS PROFILING

Peptide mapping is the method of choice for the determination and profiling of glycosylation sites at the amino-acid level. There are three concensus sites on Etanercept, two on the TNFα receptor, and one the Fc subunit.

- Classical tryptic digestion yields 64-amino acid peptide containing two glycosylation sites. Triple digestion (trypsin, Glu-C and Asp-N), with complementary cleavage sites specificity yields small peptides with no more than one site.
- Glycosylated peptides completely separated from non-glycosylated ones on widepore HILIC column, facilitating their discovery
- · Peptides identified by MS. Presence and identity of glycans confirmed by high-energy MS^E data.
- Typical glycosylation found for IgG1 Fc subunit (Asn317; G0, G0F, G1F, G2F, and M5). All sialylated species found on two sites of TNFα receptor subunit (Asn149 and 171).

· Overall profiling (assuming similar response factors) yielded similar relative responses to RapiFluor, and only two low-intensity glycans remaining undetected (G1 and G3FS2).

LPAQVAFTPY	APEPGSTCRL	REYYDQTAQM	CCSKCSPGQH
AKVFCTKTSD	TVCDSCEDST	YTQLWNWVPE	CLSCGSRCSS
DQVETQACTR	EQNRICTCRP	GWYCALSKQE	GCRLCAPLRK
CRPGFGVARP	GTETSDVVCK	PCAPGTFSNT	TSSTDICRPH
QICNVVAIPG	NASMDAVCTS	TSPTRSMAPG	AVHLPQPVST
RSQHTQPTPE	PSTAPSTSFL	LPMGPSPPAE	GSTGDEPKSC
DKTHTCPPCP	APELLGGPSV	FLFPPKPKDT	LMISRTPEVT
CVVVDVSHED	PEVKFNWYVD	GVEVHNAKTK	PREEQYNSTY
RVVSVLTVLH	QDWLNGKEYK	CKVSNKALPA	PIEKTISKAK
GQPREPQVYT	LPPSREEMTK	NQVSLTCLVK	GFYPSDIAVE
WESNGQPENN	YKTTPPVLDS	DGSFFLYSKL	TVDKSRWQQG
NVFSCSVMHE	ALHNHYTQKS	LSLSPGK	

Figure 6: Profiling of the N-glycosylation sites

O-GLYCOSYLATION SUBUNIT-LEVEL ANALYSIS

RELEASED O-GLYCANS PROFILING

SITES DETERMINATION

Figure 8: Identification of

O-glycosylated peptides and

subsequent O-glycosylation

sites determination

There is no universal enzyme that cleaves all O-glycans. We opted for a chemical O-deglycosylation, where a common issue is glycans degradation by a peeling reaction. We therefore developed

C1S(3,6)2 11.25 Figure 7: ESI/MS profiling of Etanercept O-glycans

a high-yielding alkaline β -elimination procedure, using reducing conditions to prevent most of the peeling to take place by formation of a stable alditol.

- Analysis performed by porous graphitic carbon (PGC) chromatography, coupled to MS in negative ion mode
- 1-mm diameter column allows profiling unlabelled O-glycans from low protein amounts (2.5 µg / injection).
- Two main core 1 O-glycans detected with mass errors below 3 ppm, and confirmed by use of automated MS/MS fragmentation.
- · Peeling product also identified, in much smaller amounts than alternative methods (Anal. Chem. 2014, 86, 576).

Each Etanercept chain carries 89 putative O-glycosylation sites. Therefore, to reduce the glycosylation heterogeneity of Etanercept, the protein was N-deglycosylated and desialylated, yielding exclusively asialylated core 1 O-glycans. Peptides generation and identification were performed as described for

N-glycans. • Ten O-glycosylated peptides fully separated in the wide pore HILIC mode and MS identified

· Presence of glycans prevents typical b/y fragmentations of peptide backbone, and hence sites determination at aminoacid level for peptides containing multiple putative sites.

- ETD fragmentation targeted glycosylated on peptides carried out, yielding c/z peptide fragmentation, ultimately allowing determination of each O-glycosylation site, as well as occupancy.
- Thirteen sites unambiguously characterised with average occupancy of 9.4 sites

Subunit analysis is a straightforward methodology because it does not require long sample preparation steps. Etanercept was digested with IdeZ (Promega), cleaving the TNFα receptor and Fc moieties, then N-deglycosylated and reduced in situ.

• Subunits separated by **HILIC** chromatography, monitored by intrinsic fluorescence and MS.

subunit TNFα receptor displays large heterogeneity of O-glycosylation and thus yields very broad peak.

• Automated and systematic approach identifies 31 unique species carrying from 5 to 12 O-glycans per chain, with remarkable mean error of 9 ppm, below 5 ppm for 25 most intense hits

Figure 9: Fluorescence chromatogram of etanercept subunits separated on a widepore HILIC column. Raw and deconvoluted mass spectra of the Fc/2 (left) and example of four deconvoluted mass spectra of the TNFa receptor subunit (right)

- · Most abundant species conjugated by 9 or 10 glycans (35% and 47%, respectively), with average of 9.5 O-glycans per chain
- · Gives access to molecular weight of Etanercept, normally challenging because of heterogeneity of glycosylation